miércoles, 29 de abril de 2009

PROYECTO DEL ALUMINIO

Aluminio
Magnesio ← Aluminio → Silicio
B




13
Al






















































































































Al
Ga
Tabla completaTabla extendida



Información general



Nombre, símbolo, número
Aluminio, Al, 13



Serie química
Metales del bloque p



Grupo, período, bloque
13, 3, p



Densidad
2698,4 kg/m3



Apariencia
Plateado



N° CAS
{{{CAS}}}



N° EINECS
{{{EINECS}}}



Propiedades atómicas



Densidad
26,9815386(8) u



Radio medio
125 pm



Radio atómico (calc)
118 pm (Radio de Bohr)



Radio covalente
118 pm



Radio de van der Waals
pm



Configuración electrónica
[Ne]3s23p1



Electrones por nivel de energía
2, 8, 3



Estado(s) de oxidación
3



Óxido
Anfótero



Estructura cristalina
cúbica centrada en las caras



Propiedades físicas



Estado ordinario
Sólido



Punto de fusión
933,47 K



Punto de ebullición
2792 K



Punto de inflamabilidad
{{{P_inflamabilidad}}} K



Entalpía de vaporización
293,4 kJ/mol



Entalpía de fusión
10,79 kJ/mol



Presión de vapor
2,42 × 10-6 Pa a 577 K



Temperatura crítica
K



Presión crítica
Pa



Volumen molar
10,00×10-6 m3/mol



Velocidad del sonido
6400 m/s a 20 °C





Producción


Aunque el aluminio es un material muy abundante en la corteza terrestre (8%), raramente se encuentra libre debido a su alta reactividad, por lo que normalmente se encuentra formando óxidos e hidróxidos, que a su vez se hallan mezclados con óxidos de otros metales y con sílice.
El mineral del que se extrae el aluminio casi exclusivamente se llama bauxita. Las bauxitas son productos de erosión, ricos en aluminio (del 20% al 30% en masa), procedentes de rocas madres silicatoalumínicas. Están formadas por hidróxidos de aluminio (hidrargilita-gibbsita Al (OH)3, bohemita AlOOH y diasporita AlOOH), óxidos de hierro y titanio así como ácido silícico (caolinita y cuarzo). Existen otras materias primas, como silicatos alumínicos (arcilla, anortosita, residuos del lavado de la hulla) que son menas pobres de aluminio, con una riqueza de entre un 10% y 20% en masa. La producción a partir de estas menas es posible, pero actualmente no es rentable.


Características
Características físicas
Entre las características físicas del aluminio, destacan las siguientes:
Es un metal ligero, cuya densidad es de 2700 kg/m3 (2,7 veces la densidad del agua), un tercio de la del acero.
Tiene un punto de fusión bajo: 660 ºC (933 K).
El peso atómico del aluminio es de 26,9815 u.
Es de color blanco brillante, con buenas propiedades ópticas y un alto poder de reflexión de radiaciones luminosas y térmicas.
Tiene una elevada conductividad eléctrica comprendida entre 34 y 38 m/(Ω mm2) y una elevada conductividad térmica (80 a 230 W/(m·K)).
Resistente a la corrosión, a los productos químicos, a la intemperie y al agua de mar, gracias a la capa de Al2O3 formada.
Abundante en la naturaleza. Es el tercer elemento más común en la corteza terrestre, tras el oxígeno y el silicio.
Su producción metalúrgica a partir de minerales es muy costosa y requiere gran cantidad de energía eléctrica.
Material fácil y barato de reciclar.
Características mecánicas
Entre las características mecánicas del aluminio se tienen las siguientes:
De fácil mecanizado.
Muy maleable, permite la producción de láminas muy delgadas.
Bastante dúctil, permite la fabricación de cables eléctricos.
Material blando (Escala de Mohs: 2-3). Límite de resistencia en tracción: 160-200 N/mm2 [160-200 MPa] en estado puro, en estado aleado el rango es de 1400-6000 N/mm2. El duraluminio es una aleación particularmente resistente.
Para su uso como material estructural se necesita alearlo con otros metales para mejorar las propiedades mecánicas.
Permite la fabricación de piezas por fundición, forja y extrusión.
Material soldable.
Con CO2 absorbe el doble del impacto.
Características químicas


Estructura atómica del aluminio.
Debido a su elevado estado de oxidación se forma rápidamente al aire una fina capa superficial de óxido de aluminio (Alúmina Al2O3) impermeable y adherente que detiene el proceso de oxidación, lo que le proporciona resistencia a la corrosión y durabilidad. Esta capa protectora, de color gris mate, puede ser ampliada por electrólisis en presencia de oxalatos.
El aluminio tiene características anfóteras. Esto significa que se disuelve tanto en ácidos (formando sales de aluminio) como en bases fuertes (formando aluminatos con el anión [Al (OH)4]-) liberando hidrógeno.
La capa de óxido formada sobre el aluminio se puede disolver en ácido cítrico formando citrato de aluminio.
El principal y casi único estado de oxidación del aluminio es +III como es de esperar por sus tres electrones en la capa de valencia (Véase también: metal pesado, electrólisis).
El aluminio reacciona con facilidad con HCl, NaOH, ácido perclórico, pero en general resiste la corrosión debido al óxido. Sin embargo cuando hay iones Cu2+ y Cl- su pasivación desaparece y es muy reactivo.
Los alquilaluminios, usados en la polimerización del etileno,[6] son tan reactivos que destruyen el tejido humano y producen reacciones exotérmicas violentas al contacto del aire y del agua.[7]
El óxido de aluminio es tan estable que se utiliza para obtener otros metales a partir de sus óxidos (Cromo, Manganeso, etc.) por el proceso aluminotérmico.
Aplicaciones y usos
Ya sea considerando la cantidad o el valor del metal empleado, el uso industrial del aluminio excede al del cualquier otro metal exceptuando el hierro / acero. Es un material importante en multitud de actividades económicas y ha sido considerado un recurso estratégico en situaciones de conflicto.
Aluminio metálico
El aluminio se utiliza rara vez 100% puro, casi siempre se usa aleado con otros metales. El aluminio puro se emplea principalmente en la fabricación de espejos, tanto para uso doméstico como para telescopios reflectores.
Los principales usos industriales de las aleaciones metálicas de aluminio son:
Transporte; como material estructural en aviones, automóviles, tanques, superestructuras de buques y bicicletas.
Estructuras portantes de aluminio en edificios (véase Eurocódigo 9)
Embalaje de alimentos; papel de aluminio, latas, tetrabriks, etc.
Carpintería metálica; puertas, ventanas, cierres, armarios, etc.
Bienes de uso doméstico; utensilios de cocina, herramientas, etc.
Transmisión eléctrica. Aunque su conductividad eléctrica es tan sólo el 60% de la del cobre, su mayor ligereza disminuye el peso de los conductores y permite una mayor separación de las torres de alta tensión, disminuyendo los costes de la infraestructura.
Recipientes criogénicos (hasta -200 °C), ya que contrariamente al acero no presenta temperatura de transición dúctil a frágil. Por ello la tenacidad del material es mejor a bajas temperaturas.
Calderería.
Debido a su gran reactividad química, el aluminio se usa finamente pulverizado como combustible sólido de cohetes espaciales y para aumentar la potencia de los explosivos.
También se usa como ánodo de sacrificio y en procesos de aluminotermia (termita) para la obtención y soldadura de metales.
Compuestos no metálicos de aluminio
El óxido de aluminio, también llamado alúmina, (Al2O3) es un producto intermedio de la obtención de aluminio a partir de la bauxita. Se utiliza como revestimiento de protección y como adsorbente para purificar productos químicos. El óxido de aluminio cristalino se llama corindón y se utiliza principalmente como abrasivo. El corindón transparente se llama rubí cuando es rojo y zafiro en los otros casos, utilizándose en joyería y en los emisores de rayos láser. El rubí y el zafiro también pueden ser producidos artificialmente.[8]
Los haluros de aluminio tienen características de ácido Lewis y son utilizados como tales como catalizadores o reactivos auxiliares. En particular, el cloruro de aluminio (AlCl3) se emplea en la producción de pinturas y caucho sintético así como en el refino de petróleo.
Los aluminosilicatos son una clase importante de minerales. Forman parte de las arcillas y son la base de muchas cerámicas y vidrios. En vidrios y cerámicas también se utilizan óxidos de aluminio y el borato de aluminio (Al2O3 · B2O3).
El hidróxido de aluminio (Al (OH)3) se emplea como antiácido, como mordiente, en tratamiento de aguas, en la producción de cerámica y vidrio y en la impermeabilización de tejidos.
Los hidruros complejos de aluminio son reductores valiosos en síntesis orgánica.
El sulfato de aluminio (Al2(SO4)3) y el sulfato de amonio y aluminio (Al (NH4)(SO4)2) se emplean como modiente el tratamiento en el tratamiento de aguas, en la producción de papel, como aditivo alimentario y en el curtido del cuero.[9]
El fosfato de aluminio (AlPO4) se utiliza, junto con otras materias, como deshidratante a alta temperatura.
El borohidruro de aluminio (Al (BH4)3) se añade como aditivo a los combustibles de aviones a reacción.
Las sales de aluminio de los ácidos grasos (por ejemplo el estearato de aluminio) forman parte de la formulación del napalm.
En muchas vacunas, ciertas sales de aluminio realizan la función de adyuvante inmune para ayudar a la proteína de la vacuna a adquirir suficiente potencia para estimular al sistema inmunológico.
El Al (CH2CH3)3 arde violentamente al aire y destruye rápidamente los tejidos.



No hay comentarios:

Publicar un comentario